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As the capabilities of Fiber Optic Sensing Systems continue to improve, their application to
real-time distributed sensing for structural analysis and control of flexible systems is increas-
ingly feasible. This paper will report experimental results on the use of a Fiber Optic Sensing
System for static and dynamic shape estimation of a cantilever beam and plate. Demonstrating
the use of this sensor technology in benchtop experiments is the first step in effectively incorpo-
rating fiber optic sensors in the Integrated Adaptive Wing Technology Maturation aeroelastic
half-span wind tunnel model for real-time shape sensing and feedback for drag optimization,
maneuver load alleviation, gust load alleviation, and flutter suppression control laws. The
effectiveness of the sensing system will be analyzed and the application of these results to
aeroelasticity experimentation will be discussed.

I. Nomenclature

FBG = Fiber Bragg Grating
FOSS = Fiber Optic Sensing System
GLA = Gust Load Alleviation
IAWTM = Integrated Adaptive Wing Technology Maturation
MLA = Maneuver Load Alleviation
OFDR = Optical Frequency Domain Reflectometry
TDT = Transonic Dynamics Tunnel
FE = Finite Element
WDM = Wavelength Division Multiplexing
A = Cross-sectional area
b = Width
D = Plate bending rigidity
E = Elastic modulus
f = Natural frequency, Hz
h = Height
I = Second moment of area tensor
J = Torsional constant
l = Length
pe = Photoelastic coefficient
q = Transverse load distribution
Q = Transverse point load
w = Transverse deflection
W = Integration matrix
x, y, z = Cartesian coordinates
x̂, ŷ, ẑ = Normalized Cartesian coordinates
ε = Strain tensor
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η = Modal coordinate
λB = Bragg wavelength
λi = Natural frequency parameter
ν = Poisson’s ratio
ρ = Density
φ = Clamped-free beam mode shape
χ = Free-free beam mode shape
ω = Circular natural frequency, rad/s

II. Introduction

Aircraft wings have traditionally been designed to minimize structural flexibility and aeroelastic effects during
flight in order to promote aircraft stability and performance. While this conventional design methodology seeks to

maximize performance metrics in a specific operating range, its focus on structural inflexibility and static wing geometry
does not support performance optimization across a broad range of operating conditions and results in significant
increases in airframe weight [1–6]. By taking advantage of aeroelastic effects, rather than increasing structural stiffness
in order to minimize them, structural weight can be reduced and the increased wing flexibility can be controlled to
reduce drag and structural loads and to provide flight control [5, 7]. Control of wing flexibility, however, requires sensor
technology that can estimate wing shape and vibration during flight for input to aeroelastic control laws. In order to
meet this need for distributed sensing, a Fiber Optic Sensing System (FOSS) can provide real-time distributed strain
measurements for calculation of wing shape and feedback for static and dynamic aeroelastic control.

The objectives of the current research are to demonstrate the use of FOSS for shape estimation (quasistatic
measurements) and mode shape identification (dynamic measurements) during benchtop testing of a cantilever beam
and plate. The focus is on real-time, dynamic measurement, with the goal of applying this sensing technology to active
control of a flexible wing. The foundation developed in the experimental tests described here will enable the use of
FOSS as a distributed sensor for the Integrated Adaptive Wing Technology Maturation (IAWTM) aeroelastic wing and
the evaluation of its performance in closed-loop control of static and dynamic aeroelastic effects.

In the following sections of this paper, background is provided on aeroelastic shape control, FOSS, and the IAWTM
project, and then a brief description of FOSS operating principles is given. Next, analytical models of beam and plate
mechanics are introduced and experimental results for static and dynamic shape identification are reported for both the
cantilever beam and plate. The paper concludes with an evaluation of FOSS as a distributed sensor and its application to
aeroelastic experimentation.

III. Background

A. Aeroelastic Shape Control
Several research programs have demonstrated the feasibility of flexible wing designs that reduce structural weight

while maintaining aircraft performance. In the Active Aeroelastic Wing (AAW) program, improved control power and
reductions in drag and structural weight were shown for an actively controlled flexible wing utilizing leading edge
control surfaces and favorable wing twist. The design techniques utilized in the AAW program were shown to reduce
the aircraft takeoff gross weight by five to 20 percent [8]. Utilizing active controls and leading and trailing edge control
surfaces, the Active Flexible Wing (AFW) program demonstrated the ability of a flexible wing to achieve desired load
alleviation and flutter suppression while reducing structural weight [3, 9]; similar results have also been shown for other
airframes [6]. Researchers have predicted that a full implementation of the AFW concept would lead to a reduction in
takeoff gross weight of 15 percent [6, 9]. Developing the enabling technologies to support such flexible wing designs
can thus lead to significant increases in performance.

B. Fiber Optic Shape Sensing
By providing distributed strain measurements which can be used for shape estimation, FOSS is one enabling

technology for increased efficiency designs employing flexible structures. In comparison to conventional strain gauges,
FOSS is lightweight and enables higher spatial resolution of the strain field. Two FOSS interrogation methods are
frequently used: one type offers higher spatial resolution with lower frequency bandwidth and the other offers higher
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frequency bandwidth with lower spatial resolution. In this paper, the latter is utilized since the goal is to estimate the
dynamic response of the structure at relatively high frequencies.

Several procedures have been developed to transform distributed strain measurements from FOSS into estimated
deflection shapes. A common method, which is utilized in this paper, relies on estimating the curvature from strain
measurements and then integrating the curvature twice to determine the deflection. Ko [10] described the implementation
of this method and presented results, based on simulated strain measurements from finite element (FE) analysis, which
validated the accuracy of the shape reconstruction for beams and for plates with multiple spanwise fibers. In order to
construct the body’s three-dimensional deformation field, estimated deflections along sensing fibers can be interpolated
using an FE model to points in the body not instrumented with FOSS. This process is known as the inverse FE
method [11–13]. Extending the previous shape reconstruction algorithm detailed by Ko, Pak [13] described a two-step
method that included an FE model to interpolate the deformation for the entire structure based on strain measurements
from parallel spanwise fibers. For various load cases, his method was accurate in reconstructing the deformation field in
comparison to photogrammetry data. A number of additional experimental studies have been conducted comparing
shape estimates based on FOSS with other sensing techniques (including photogrammetry), indicating relatively high
accuracy depending on the shape sensing algorithm employed [14–19].

In addition to studies utilizing FOSS for static shape sensing, other researchers have studied its use for dynamic
measurement and characterization [20, 21] as well as active control. Several studies have demonstrated improved
vibration suppression for control laws which incorporate distributed strain measurements based on FOSS in comparison
to conventional point sensors [22–24]. As indicated by these benchtop studies, the distributed sensing capability of
FOSS has the potential to enable improved controller performance for a variety of control objectives.

C. Integrated Adaptive Wing Technology Maturation
The IAWTM project is a NASA/Boeing joint effort with the objective of exploiting active controls to mitigate weight

penalties typically incurred by very high aspect ratio wings. The IAWTM aircraft is a modern transport configuration
based on the NASA Common Research Model [25], but with an increased aspect ratio of 13.5 compared to the nominal
value of nine. IAWTM is complementary to and builds upon prior passive aeroelastic optimization efforts, such
as tow-steered composite layup, that have been employed on this same high aspect ratio wing. In particular, active
controls are sought for maneuver load alleviation (MLA), gust load alleviation (GLA), and flutter suppression while
simultaneously achieving drag optimization for off-design conditions. These combined efforts are expected to further
reduce structural weight beyond that possible solely through passive tailoring.

Following extensive analytical trade studies and control law development, the IAWTM project will culminate with a
wind tunnel demonstration in the NASA Langley Transonic Dynamics Tunnel (TDT). FOSS will support the IAWTM
test objectives by enabling sensing of the quasistatic wing deformation and dynamic mode shapes of the flexible wing
during testing, and serving as input to the static and dynamic aeroelastic control laws to be tested. The potential for
improved efficiency based on FOSS distributed sensing will be validated and the feasibility of incorporating FOSS in
future aeroservoelastic tests will be evaluated.

IV. Fiber Optic Sensing System
The operating principle behind FOSS is a coupled response between the optical and mechanical characteristics of an

optical sensor. The optical sensor, known as a Fiber Bragg Grating (FBG), reflects a nominal wavelength of incident
light, its Bragg wavelength, which is specified during manufacture. Changes in strain lead to proportional changes in the
reflected wavelength according to Eq. (1),

∆λB
λB
= (1 − pe) ε , (1)

where λB is the Bragg wavelength and pe is the photoelastic coefficient for the fiber. These changes can be detected
using an optical interrogator. Although changes in temperature also cause changes in the Bragg wavelength, in this
paper the temperature is assumed to be constant throughout the experimental measurements. Equation (1) can be used
to calculate the strain at each sensor based on measured changes in the Bragg wavelength.

In Optical Frequency Domain Reflectometry (OFDR) interrogation, many FBGs manufactured at the same Bragg
wavelength can be positioned in series along one optical fiber, and their individual changes in Bragg wavelength can be
measured through digital signal processing algorithms. By tracking shifts in the peak reflected wavelengths, changes in
the detected Bragg wavelength for each sensor can be mapped to corresponding changes in strain by Eq. (1). Although
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the OFDR interrogation method enables the multiplexing of hundreds of sensors at the same Bragg wavelength on a
single fiber, its dynamic measurement capabilities are relatively low compared to conventional sensors. The maximum
sampling rate for OFDR systems are generally less than 100 Hz, with relatively high measurement latency. For a variety
of applications, these measurement characteristics are sufficient to meet test objectives; for active control of gust loads
or flutter suppression, however, the sampling rate must be higher.

In an alternate interrogation technique, known as Wavelength Division Multiplexing (WDM), the FBGs on one
sensing fiber are manufactured at distinct nominal Bragg wavelengths. Each FBG occupies its own discrete region
in wavelength space, and during an incident wavelength sweep the contribution of each FBG to the total measured
response can be determined by tracking the movement of individual spectral peaks. This interrogation method is able to
achieve significantly higher sampling rates than OFDR (on the order of 1 kHz). The tradeoff, however, is that fewer
sensors can be etched on a single fiber due to the finite wavelength range of the laser’s sweep, with most systems
supporting approximately 40 sensors per fiber. For the IAWTM objectives, it was determined that 40 sensors per fiber
would provide sufficiently dense measurements, so a higher sampling rate WDM system was chosen in order to provide
feedback for both static and dynamic aeroelastic control laws. This is also the system that is used for the benchtop tests
described in this paper.

V. Beam Mechanics

A. Theoretical Model
For a uniform beam with constant rectangular cross-section, the classical static governing equation for the transverse

motion of the centerline is given by Eq. (2):

EIy
d4w(x)

dx4 = q(x) , (2)

where Iy =
∬

A
z2dA = bh3/12 is the second moment of area for the cross section, EIy is the bending stiffness, w(x) is

the transverse deflection of the beam centerline, and q(x) is the transverse load distribution. A schematic of the relevant
dimensions for a beam with clamped-free boundary conditions is shown in Fig. 1.

Fig. 1 Schematic of a cantilever beam in bending.

The assumptions of classical beam theory include: (1) the beam width and thickness are much smaller than its length,
(2) the beam deflection is small, (3) the beam centerline does not stretch, (4) cross sections of the beam are rigid and
remain normal to the beam centerline, and (5) rotational inertia and transverse shear are negligible.

Normalizing the longitudinal domain by the beam length (x̂ = x/l), under the boundary conditions for a cantilever
beam and a transverse load of q(x̂) = Q · δ(1), where Q is the point load applied at the tip, the static deflection solution
is:

w (x̂) = Ql3

6EIy
x̂2 (3 − x̂) . (3)

Differentiating twice with respect to x yields the curvature:

d2w(x̂)
dx2 =

1
l2

d2w(x̂)
dx̂2 =

Ql
EIy
(1 − x̂) . (4)

The static deflection and curvature shapes, normalized to have a maximum value of 1, are shown in Fig. 2.
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(a) (b)

Fig. 2 (a) Normalized static deflection and (b) normalized static curvature of a cantilever beam.

The surface strain on the top of the beam, which is linearly related to the beam’s curvature, is given by:

εxx(x̂) = −
h

2l2 ·
d2w(x̂)

dx̂2 . (5)

Distributed strain measurements along the upper surface of a beam with a static tip load, therefore, should closely follow
the linearly decreasing profile shown in Fig. 2(b). This will be demonstrated in the experimental section using FOSS.

The dynamic classical beam equation of motion for undamped, free vibration is given by:

ρA
∂2w (x, t)
∂t2 + EIy

∂4w (x, t)
∂x4 = q (x, t) , (6)

where ρ is the density and A is the cross-sectional area of the beam. The corresponding cantilever boundary conditions
are given in Eq. (7), where the beam is clamped at x̂ = 0 and free at x̂ = 1:

w(0, t) = 0 ∂2w(x̂,t)
∂x̂2

���
x̂=1

= 0

∂w(x̂,t)
∂x̂

���
x̂=0

= 0 ∂3w(x̂,t)
∂x̂3

���
x̂=1

= 0 .
(7)

Using the separation of variables method and expressing the solution to Eq. (6) as w (x̂, t) = φ (x̂) η (t), where φ (x̂)
is the mode shape and η (t) is the modal coordinate, the spatial solution under the boundary conditions given in Eq. (7)
yields the characteristic equation:

1 + cos λr cosh λr = 0 , (8)

where the quantity λr , known as the natural frequency parameter, is defined as λr =
(

4
√
ρAl4ω2

r/EIy

)
and ωr is the

circular natural frequency. Expressing this relationship for ωr , the corresponding natural frequencies for a cantilever
beam are given by:

ωr =

(√
EIy
ρAl4

)
λ2
r . (9)

Solutions to Eq. 8 can then be substituted to yield the system natural frequencies.
The spatial solution also yields the mode shapes of the cantilever beam:

φr (x̂) = cos λr x̂ − cosh λr x̂ −
(
cos λr + cosh λr
sin λr + sinh λr

)
(sin λr x̂ − sinh λr x̂) . (10)

The first four of these mode shapes have been plotted in Fig. 3 where they have been normalized to have a maximum
absolute value of 1. The curvature profiles for these mode shapes (φ′′r (x̂)) have also been plotted in Fig. 3(b) with the
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same normalization. As previously discussed for the static solution, the surface strain on the top of the beam is linearly
related to the beam curvature, so distributed strain measurements from a FOSS fiber bonded to the upper surface of a
dynamically excited cantilever beam should correspond with the shape of the normalized curvature profiles shown here
for each mode.

(a) (b)

Mode 1

Mode 2

Mode 3

Mode 4

Mode 1

Mode 2

Mode 3

Mode 4

Fig. 3 (a) Normalized dynamic mode shapes and (b) normalized dynamic curvature shapes of a cantilever
beam.

B. Shape Estimation from Strain Field
If the strain field is a known continuous function, the curvature can be directly determined from Eq. (5) and then

integrated twice to yield the cantilevered beam deflection profile based on zero integration constants at the root. Since a
finite number of FBGs can be etched on a single fiber, however, the FOSS strain output is a vector of discrete strain
measurements. Several methods can be used to numerically integrate these discrete strain measurements in order to
estimate the deflection profile for the beam. The Newmark-β method [26] is a single step method used in structural
dynamics for integration of known accelerations to determine velocities and displacements. It can be applied here to the
known curvature estimates, computed from the strain field using Eq. (5), to yield the slopes and deflections at the FOSS
strain stations. Using the common parameters of the Newmark method (α = 1/2 and β = 1/4), the slope and deflection
at station i + 1 are given by Eq. (11):

w′i+1 = w′i +
∆x
2
·
(
w′′i + w

′′
i+1

)
wi+1 = wi + ∆x · w′i +

∆x2

4
·
(
w′′i + w

′′
i+1

)
,

(11)

where ∆x is the distance between strain stations and ′ indicates differentiation with respect to x. Similar numerical
techniques for determining structural deformation based on strain measurements have been used by other researchers [10,
17].

Assuming that the discrete strain measurements either span the domain of the beam or are extrapolated to do so, one
way to implement the numerical integration based on Eq. (11) uses matrices as the “integrators”. For the boundary
conditions of the cantilever beam, the i + 1 slope estimate is:

w′i+1 =
∆x
2

(
w′′0 + 2

i∑
k=1

w′′k + w
′′
i+1

)
. (12)
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The resulting equations for N positions, including the beam root, can be arranged as an N × 1 vector:

w′ =



w′0
w′1
w′2
w′3
...

w′
N−1


=
∆x
2



0 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 2 2 1 0 · · ·
...

. . .
...

1 2 2 · · · 2 1





w′′0
w′′1
w′′2
w′′3
...

w′′
N−1


= Ww′′ . (13)

The matrix W can be interpreted as the “integration matrix”, which can be used to determine the slope vector from the
curvature vector. It turns out that the exact same pattern holds for the deflection estimates based on the slope vector,
such that:

w = Ww′ = W 2w′′ , (14)

where the matrix W is applied twice to determine the deflection vector w from the curvature vector w′′.
An additional numerical integration strategy is to interpolate the acquired discrete data between the strain stations

using a polynomial in order to increase the number of integration points. One such scheme known as a cubic spline uses
piecewise cubic polynomials for interpolation, which ensures that the curvature of the spline is continuous throughout
the interpolation region. This method has previously been used in various formulations to assess its effectiveness in
shape reconstruction [16]. The Newmark numerical integration scheme can then be applied to the interpolated data to
determine the beam deflection.

One note on applying this numerical integration strategy that should be emphasized is that the discrete strain
measurements must span the domain of the beam, i.e., measurements at the root and tip must be available in order to
apply this technique. Practically speaking, neither estimate is easy to make using bonded sensing fibers. Instead, for the
experimental cases in this paper the discrete strain measurements are always extrapolated using a cubic spline to yield
estimates spanning the beam length.

With the known deflection and strain profiles for a tip loaded cantilever beam, simulated FOSS measurements can
be computed from Eq. (5) using the static curvature profile given by Eq. (4) at discrete strain stations along the beam
domain. The material and geometric properties of the beam to be analyzed are given in Table 1, which correspond to
the beam properties for the experimental specimen described later.

Table 1 Material and geometric properties of the beam specimen.

Parameter Variable Value
Material Aluminum 6061
Mass, Total m 157 g
Density ρ 2640 kg/m3

Elastic modulus E 68.9 GPa [27]
Poisson’s ratio ν 0.35 [27]
Length, Total 488 mm
Length, Free l 450 mm
Width b 38.1 mm
Height h 3.20 mm

For the simulated data, the curvature/strain is calculated based on an applied tip load of 1 N. The first strain
measurement is calculated at 20 mm from the root of the beam and subsequent measurements are calculated at 20 mm
intervals along the beam’s span. This arrangement is based on the bonding scheme for the benchtop cantilever beam
tested in the experimental section, which is instrumented with a fiber with FBGs 20 mm on center. These simulated
measurements are then integrated using the schemes described above and compared to the analytical deflection profile
given by Eq. (3).

Two cases are compared: one without interpolation and the second with a cubic spline. The cubic spline used for
the second case interpolates the simulated strain measurements every 5 mm, corresponding to a quadrupling of the
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strain measurements used for integration. As previously noted, the root and tip measurements must be extrapolated
in the implementation of this integration scheme. For the interpolation case, the same 5 mm spacing is used in the
extrapolation regions from the root to the first sensor and from the last sensor to the tip. In the integration case without
interpolation, only the root and tip measurements are extrapolated.

The integrated deflection profiles using the simulated data is shown in comparison to the analytical deflection in
Fig. 4 for exclusive Newmark integration and Newmark integration of the cubic spline. Qualitatively, integration after
the cubic spline leads to a result that is almost identical to the analytical (an error of only 0.003% at the tip) while the
exclusive Newmark integration of the simulation strain is significantly farther from the analytical (an error of more than
3% at the tip).

Fig. 4 Static deflection of the cantilever beam for a point tip load based on different integration algorithms of
simulated FOSS strain data.

C. Mode Identification from Strain Field
The same integration methods described for the static case can also be applied for dynamic mode shape identification.

Here, simulated FOSS strain data is computed as previously described using Eq. (5) with the mode shapes given by
Eq. (10) to compute the strain for the first four modes. The same Newmark integration scheme, with and without cubic
spline interpolation, is then conducted and the results compared to the analytical mode shapes in Fig. 5.
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Fig. 5 Mode shapes of the cantilever beam based on different integration algorithms of simulated FOSS strain
data.

To compare the results of these integration schemes with the analytical mode shapes, the maximum relative errors in
shape for both integration methods, which occur at the beam tip, are reported in Table 2.

Table 2 Mode shape tip deflection error for different integration algorithms of simulated FOSS strain data.

Method Mode 1 Mode 2 Mode 3 Mode 4
Newmark 3.0% 9.6% 21.8% 17.2%
Cubic Spline plus Newmark 0.002% 0.002% 0.9% 7.8%

As for the integration of simulated static strain data, interpolating the discrete strain measurements before integration
yields results that are significantly more accurate than exclusive integration of the simulated strain measurements.
Based on these results, cubic spline interpolation will be implemented for static and dynamic shape estimation in the
experimental section.

VI. Plate Mechanics

A. Theoretical Model
As with the beam, several assumptions are utilized in classical plate theory: (1) the plate thickness is much smaller

than its length and width, (2) the plate deflection is small, (3) the plate midplane does not stretch, (4) cross sections
of the plate are rigid and remain to normal to the plate midplane, and (5) rotational inertia and transverse shear are
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negligible. The plate motion is assumed to be a function only of the x- and y-coordinates and time, and thus, can be
fully described by the deformation of the midplane shown in gray in Fig. 6.

Fig. 6 Schematic of a cantilever plate.

The classical plate equation of motion for undamped free vibration is given by:

ρh
∂2w (x, y, t)

∂t2 + D∇4w (x, y, t) = q (x, y, t) , (15)

where D = Eh3/12(1−ν2) is the bending rigidity of the plate, ν is Poisson’s ratio, and∇4(·) =
(
∂xxxx + ∂xxyy + ∂yyyy

)
(·)

is the biharmonic operator. The boundary conditions for a rectangular plate oriented with sides parallel to the x- and
y-axes are:

Mx δ (∂xw) = 0
My δ

(
∂yw

)
= 0(

Vx + ∂yMxy

)
δw = 0(

Vy + ∂xMxy

)
δw = 0 ,

(16)

where M and V are moments and shear forces.
Following the approximate method described and utilized extensively by others [28–32], the Rayleigh-Ritz method

can be used to determine an upper bound of the natural frequencies for plate structures after specifying candidate
functions to describe the mode shapes. For rectangular plates, one of the more useful sets of candidate functions are
those composed of products of the beam functions corresponding to the boundary conditions at opposite sides of the
plate. The total plate response is then given by the summation of these beam products:

w(x̂, ŷ) =
∑
r

∑
s

Crsφr (x̂)χs(ŷ) , (17)

where φr and χs are the beam mode shapes corresponding to the boundary conditions in the x̂- and ŷ-directions,
and Crs are coefficients describing the contribution of each candidate mode shape to the total response. For a given
number n of beam mode shapes in each of the coordinate directions, the Rayleigh-Ritz method can be used to yield
estimated eigenvalues, λi , for the n2 modes of the plate, which are approximated by corresponding products of those
beam functions. The natural frequencies of the plate can then be expressed as:

ωi =

(√
D
ρhl4

)
λ2
i . (18)

For the clamped-free plate, φr are the clamped-free beam mode shapes given by Eq. (10) and χs are the free-free
beam mode shapes. The flexible free-free beam modes are:

χs(ŷ) = sin λs ŷ − sinh λs ŷ −
(

sinh λs − sin λs
cosh λs − cos λs

)
(cos λs ŷ + cosh λs ŷ) , (19)

where λs are the solutions to the characteristic equation:

1 − cos λs cosh λs = 0 . (20)
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In addition to these flexible modes, the free-free beam also has two rigid body modes: (1) pure translation, which has
a mode shape described by χr1 (ŷ) = 1, and (2) pure rotation, which has a mode shape described by χr2 (ŷ) = 1 − 2ŷ.
Although the products of beam functions yield reasonably accurate models for the mode shapes and predictions for
the natural frequencies of a cantilever plate, it should be noted that they do not exactly meet the free edge boundary
conditions.

Using the Rayleigh-Ritz method based on products of beam functions, the frequency parameters λi are computed
here for the plate specimen studied in this paper. Similar results have been tabulated in previous works for a range of
boundary conditions and aspect ratios [30, 31]. The material and geometric properties of the rectangular cantilever plate
to be analyzed are given in Table 3, which correspond to the properties for the experimental plate specimen described
later.

Table 3 Material and geometric properties of the plate specimen.

Parameter Variable Value
Material Aluminum 6061
Mass, Total m 3.06 kg
Density ρ 2730 kg/m3

Elastic modulus E 68.9 GPa [27]
Poisson’s ratio ν 0.35 [27]
Length, Total 860 mm
Length, Free l 800 mm
Width b 406 mm
Height h 3.20 mm
Aspect Ratio (l/b) 1.97

In Fig. 7, the convergence of the frequency parameters as the number of candidate modes increases is shown. At
each iteration, an additional candidate mode shape is added in both the x̂- and ŷ-directions and the eigenproblem solved
to determine the estimated frequency parameters. As the number of candidate mode shapes increase, each frequency
parameter is converging from above toward its final estimated value λi, f .

Fig. 7 Convergence of the frequency parameters λi for the first four modes of the cantilever rectangular plate
with l/b = 1.97 and ν = 0.35 based on the Rayleigh-Ritz method and products of beam functions. The ratio
λi/λi, f indicates the percent difference between the iteration value and the final value of the corresponding
frequency parameter.
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The final frequency parameters for this plate configuration are given in Table 4, where the corresponding mode
shapes based on products of beam functions are also specified.

Table 4 Frequency parameters and approximate mode shapes for the cantilever plate with l/b = 1.97 and
ν = 0.35 based on the Rayleigh-Ritz method and products of beam functions.

Mode Description λi Mode Shape
1 Bending 1 1.8512 φ1(x̂)χr1 (ŷ) = φ1(x̂)
2 Torsion 1 3.7640 φ1(x̂)χr2 (ŷ) = φ1(x̂) (1 − 2ŷ)
3 Bending 2 4.6166 φ2(x̂)χr1 (ŷ) = φ2(x̂)
4 Torsion 2 6.8161 φ2(x̂)χr2 (ŷ) = φ2(x̂) (1 − 2ŷ)

The FE mode shapes for the plate are also determined in MSC NASTRAN 2018.0 [33] using SOL 103 (normal
modes analysis). A comparison of the approximate mode shapes based on products of beam functions to the FE mode
shapes is shown in Fig. 8, where the shapes are scaled to have the same absolute maximum displacement.

(a) Mode 1, Bending 1 (b) Mode 2, Torsion 1

(c) Mode 3, Bending 2 (d) Mode 4, Torsion 2

Fig. 8 Comparison ofmode shapes for the cantilever rectangular plate with l/b = 1.97 and ν = 0.35 determined
by products of beam functions (grids) and FE analysis (dots). The clamped edge is on the right.

For all the modes presented, the general character of the shapes are the same for both techniques. However, it is also clear
that the approximate mode shapes based on products of beam functions (plotted as gridded surfaces), do not perfectly
account for the boundary conditions along the free edges. In particular, the increased stiffness of these approximate
mode shapes compared to the FE shapes can be seen along the plate edges.

B. Twist Rate Estimation from Strain Field
A procedure for estimating the shape of a deformed cantilever plate based on the strain field will be described in this

section; similar formulations have previously been described [13, 14, 34]. Consider the unprimed and primed axes
shown in Fig. 9.

12



Fig. 9 Reference coordinate axes for shear and axial strain.

The strain in the direction of the rotated x ′-axis can be determined by the strain in the unrotated axes using the
transformation equation for strain [28]:

εx′x′ = a2
x′xεxx + 2ax′xax′yεxy + a2

x′yεyy =
1
2

(
εxx + εyy

)
+ εxy , (21)

where the direction cosines between the two frames are ax′x = ax′y =
√

2/2 for a 45-deg rotation. For cylindrical
bending about the y-axis (i.e., εyy = εxy = 0), the axial strain in a fiber oriented at 45-deg from the x-direction, εx′x′ , is
thus equal to half the bending strain εxx , and for pure torsion (i.e., the bending strains are εxx = εyy = 0), εx′x′ is equal
to the shear strain εxy . Thus, under pure torsion a fiber oriented at 45-deg can be used to determine the shear strain at
that point.

For a narrow rectangular cross section, using the Prandtl stress function it can be shown [28, 35] that far from the
narrow ends of the cross section the shear strain is given by:

εxy = −αz , (22)

where α is the twist rate. For pure torsional modes, since the shear strain is equal to εx′x′ , the twist rate α can be
determined directly based on measurements of axial strain in the x ′-direction:

α = −1
z
εx′x′ . (23)

For the case of general motion, estimating the twist rate by Eqn. (22) requires measurements of the normal strains in
three directions (x, y, and x ′) to compute the shear strain by Eqn. (21).

Based on this result, the same numerical integration strategies described above for estimating the transverse deflection
can be used to estimate the twist distribution from distributed measurements of the twist rate. To illustrate one layout
that incorporates strain measurements in the rotated x ′-direction, FE data are computed for three simulated spanwise
fiber runs on the rectangular plate with properties specified in Table 3: (1) εxx along the leading edge, (2) εx′x′ along the
midchord, and (3) εxx along the trailing edge. This is the fiber layout implemented for the experimental tests described
later. These strain distributions are shown in Fig. 10 for the first four modes.
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(a) Mode 1, Bending 1 (b) Mode 2, Torsion 1

(c) Mode 3, Bending 2 (d) Mode 4, Torsion 2

Fig. 10 Normal strain in the x-direction along the leading and trailing edges and in the x ′-direction along the
midchord for the first four modes of the cantilever rectangular plate with l/b = 1.97 and ν = 0.35 based on FE
analysis.

The qualitative participation of each simulated fiber in a particular mode can be observed in these plots. Modes 1 and
3, for example, are primarily bending modes and show identical responses for the two bending fibers (on the leading
and trailing edges), which are approximately the same shape as the analytical curvatures for the first and second beam
bending modes. As expected from the strain transform equation (Eq. (21)), the strain response for the midchord fiber is
approximately half of the normal strain for the fibers oriented in the x-direction for Modes 1 and 3.

Modes 2 and 4, on the other hand, are somewhat more complex. The expected response of the midchord fiber for
these modes, based on the products of beam functions given in Table 4, can be shown to correspond to the curvature
shapes of the first two beam bending modes. A comparison of the shape in Fig. 10(b) for εx′x′,MID to that of εxx,LE in
Fig. 10(a) shows a loose correspondence. A similar approximate correspondence can be seen in comparing the shape
in Fig. 10(d) for εx′x′,MID to that of εxx,LE in Fig. 10(c). The major difference for these cases is that the tip boundary
condition for the midchord fiber under torsion (which is proportional to the plate’s twist rate) is not actually zero, so the
products of beam functions do not perfectly satisfy the plate boundary conditions.

Several additional observations for modes 2 and 4 are also of interest: (1) the response of the midchord twist rate
fiber, εx′x′,MID, is of the same magnitude as the bending fibers, (2) the bending fibers respond in opposite directions to
each other, and (3) the bending responses correspond approximately to the strain shapes of its preceding bending mode.
The first two observations here imply two methods to identify the twisting mode shapes. Either the response of the
midchord twist rate fiber can be used or the responses of the leading and trailing edge fibers can be compared. This
second method has been used by Pak [13], where multiple longitudinally oriented fibers are used to approximate the
deformation along each slice of a plate, which are then used to reconstruct the deformation of the entire structure.
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VII. Experimental Procedures and Results
Following the development based on simulated strain data in the previous two sections, the integration scheme

is implemented here for experimental data. The estimated tip displacement is then compared with experimental
measurements for the static cases, and the estimated mode shapes are compared with the theoretical results.

The interrogator used here is the Micron Optics si-155, which supports 4 channels of sensing fibers and a sampling
rate of 1 kHz. The sensor latency, measured in comparison with a collocated strain gauge, is approximately 0.65 ms. Each
sensing fiber utilized in this paper is manufactured by FBGS and is etched with 39 FBGs located 20 mm center-to-center.
The fibers are attached to the beam and plate using Hysol EA 9394, a two part aircraft adhesive. The surface is first
thoroughly cleaned using 200 proof ethanol and then the fiber is temporarily positioned using Kapton tape. Kapton tape
is also used to lay down a masking line on either side of the fiber. A final cleaning of the surface is conducted with the
ethanol immediately prior to application of the adhesive. The adhesive is applied in a layer approximately 0.5 to 1.0 mm
thick, and care must be taken to roll the fiber back and forth to ensure the adhesive forms an effective bond between the
fiber and the substrate.

A. Beam Testing Procedure
Validation of the shape estimation process using distributed strain measurements is conducted here on a cantilever

beam. The material and geometric properties of the beam are as previously summarized in Table 1. For the static
tests, the beam is instrumented with a single FOSS fiber on its lower surface oriented in the spanwise direction. The
experimental setup and schematic for the static tests of the cantilever beam are shown in Fig. 11(a-b). Details of the
fiber layout are summarized in Table 5; FBGs located in the section of the fiber which is looped back after reaching the
tip are not used for analysis.

450

38.1

Full-bridge Strain Gauge

40

Static Load

Bonded optical fiber

400

(a)

(b)

Accelerometer

Support

Bonded optical fiber

450

38.1

70

Full-bridge Strain Gauge

40

Shaker

(c)

(d)

Support

Fig. 11 Experimental setups for the cantilever beam. (a) Static test setup of cantilever beam, (b) schematic of
static test setup, (c) dynamic test setup of cantilever beam, and (d) schematic of dynamic test setup. Dimensions
are in mm.
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Table 5 Specifications of the fiber layout for the cantilever beam.

Parameter Value (mm)
Spanwise locations of 22 FBGs x = 20i for i = 1, 2, . . . , 22
Chordwise distance from leading/trailing edge 5

A full-bridge strain gauge is also located on the beam at 40 mm from the root for calibration and comparison with
the FOSS strain measurement located at the same position. During dynamic testing, the beam is excited by a shaker
positioned on the beam centerline 70 mm from the beam root. The signal flow for these tests is given in Fig. 12.
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Fig. 12 Signal flow for experimental testing of the cantilever beam.

During static testing, loads are applied to the beam by a hanger and masses at 400 mm from the root. For the tip
load results reported here, the x-coordinate is normalized by 400 mm, i.e., x̂ = 1 at x = 400. This location is chosen in
order to facilitate the application of static loads, which would be practically difficult to accomplish directly at the beam
tip. Five different mass loads are applied: 100, 200, 300, 400, and 500 g. Each increasing load is applied slowly and
measurements taken after 60 s in order to allow any transient vibration to damp out. For each loading, FOSS and strain
gauge measurements are taken for 10 s at a sampling rate of 1 kHz. The mean of these data for each sensor is then used
as its static strain measurement in the analysis.

The nominal photoelastic coefficient for the FBGs, as reported by the fiber manufacturer FBGS, is pe = 0.22 ε−1.
To account for small differences in that sensitivity due to differential bonding location, adhesive, or manufacturing, the
sensitivity of each FBG can be estimated by comparing its strain measurement with its corresponding analytical value
for a given load case. This calibration process is completed for all five load cases and the sensitivity for each FBG
estimated as the mean of these comparisons. Based on this method, the empirical photoelastic coefficients for the FBGs
in this sequence of tests ranged from 0.19 to 0.22 ε−1, with a mean value of 0.22 ε−1.

For the dynamic tests, a sine sweep from 2 to 450 Hz with frequency steps of 0.1 Hz at a constant amplitude of
excitation is conducted in order to determine the frequency response at each FBG. The experimental setup and schematic
for the dynamic tests of the cantilever beam are shown in Fig. 11(c-d). At each frequency, 10 cycles of excitation are
recorded at a sampling rate of 1 kHz. The standard deviation of this time data is then computed to yield an estimated
amplitude of the strain response at each sensor for each frequency. The mean of the calibrated photoelastic coefficient,
which is equal to the nominal value reported by the manufacturer (pe = 0.22 ε−1), is used for all FBGs in these tests.

16



B. Plate Testing Procedure
Validation of the shape estimation process using distributed strain measurements is also conducted for a cantilever

plate. The material and geometric properties of the rectangular plate are as previously summarized in Table 3. An
image and schematic of the cantilever plate and fiber layout are shown in Fig. 13. The leading and trailing edge fibers
are oriented spanwise to measure bending, and the midchord (twist rate) fiber is oriented in a 45-deg sawtooth pattern to
measure shear strain. Details of the fiber layout are summarized in Table 6.

800

69 200

406.4

Shaker

Support

Bonded optical fiber (Bending Fiber 2)

x

Bonded optical fiber (Bending Fiber 1)

45o

45o

Bonded optical fiber (Twist Rate Fiber)

x = Shaker location

50

(a)

(b)

Fig. 13 Experimental setup for the cantilever plate. (a) Photograph and (b) schematic. Sawtooth pattern for
the midchord twist rate fiber is not to scale. Dimensions are in mm.

Table 6 Specifications of the fiber layout for the cantilever plate.

Fiber Parameter Value (mm)
Bending Fibers 1 and 2 Spanwise locations of 39 FBGs x = 20i for i = 1, 2, . . . , 39

Chordwise distance from leading/trailing edge 10
Twist Rate Fiber Spanwise locations of 39 FBGs x = 15i for i = 1, 2, . . . , 39

Chordwise distance from leading/trailing edge 203.2

The plate is excited by a shaker positioned at 200 mm from the plate root and 50 mm from the trailing edge. The
signal flow for these experiments is given in Fig. 14.
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Fig. 14 Signal flow for experimental testing of the cantilever plate.

A sine sweep from 2 to 100 Hz with frequency steps of 0.1 Hz and at a constant amplitude of excitation is conducted
in order to determine the strain frequency response along each fiber. At each frequency, 10 cycles of excitation are
recorded at a sampling rate of 1 kHz. The standard deviation of this time data is then computed to yield an estimated
amplitude of the strain response at each sensor for each frequency. The mean of the calibrated photoelastic coefficient,
which is equal to the nominal value reported by the manufacturer (pe = 0.22 ε−1), is used for all FBGs in these tests.

C. Beam Results
In Fig. 15(a), the calculated curvature distribution based on the splined FOSS measurements is shown for each load

case and compared with the calculated curvature based on the strain gauge as well as the analytical curvature based on
the measured tip deflection. The analytical curvature profiles are determined by evaluating Eqn. 3 for the tip deflection
(x̂ = 1), yielding the expression: w(1) = Ql3/3EIy . Substituting this relationship into Eqn. 4, the curvature distribution
for a measured tip deflection, w(1), is given by:

d2w(x̂)
dx̂2 = 3(1 − x̂) · w(1) (24)

The splined FOSS data is integrated twice using the method described above and compared to the analytical deflection
based on the measured tip deflection in Fig. 15(b).
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Increasing load Increasing load

(a) (b)

Fig. 15 (a) Curvature and (b) deflection of the cantilever beam based on integration of static experimental
FOSS strain data for concentrated loads applied at 400 mm.

The relative errors between the FOSS estimated and measured tip deflections are reported in Table 7.

Table 7 Error between FOSS estimated and measured static tip deflections.

Load Case Tip Mass (g) Error
1 100 -0.90%
2 200 0.18%
3 300 -0.30%
4 400 0.59%
5 500 0.43%

With errors less than 1% for all cases, the results based on the described integration method are relatively accurate even
though strain measurements are only available at 20 locations during static testing. Using an OFDR system would likely
provide even more accurate integrated results as less interpolation would be required to achieve high strain resolution
throughout the beam.

In Fig. 16, the character of the strain distribution as a function of the frequency of excitation is illustrated, where
the absolute value of the strain amplitude is plotted for each FBG. As the frequency increases from top to bottom, the
absolute value of the strain at each sensor is plotted as a color map, with dark blue corresponding to low absolute strain
and dark red to high absolute strain. The regions of high strain response occur near the resonant frequencies of the
beam. Detail plots of the regions around the first four transverse bending resonant frequencies are shown in Fig. 17.
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Fig. 16 Strain distribution in the cantilever beam subjected to harmonic excitation as a function of excitation
frequency. Color map with dark blue/dark red corresponding to low/high absolute strain.

(b) Mode 2

(c) Mode 3 (d) Mode 4

(a) Mode 1

Fig. 17 Detail of strain distribution in the cantilever beam subjected to harmonic excitation for the regions
around the first four resonant frequencies. Color map with dark blue/dark red corresponding to low/high
absolute strain.

In order to determine the experimental resonant frequencies of the beam, the summation of the absolute strain in all
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FBGs is calculated at each excitation frequency. This response metric, plotted in Fig. 18, is less noisy than the strain at
any particular FBG and yields an improved estimate of the frequencies corresponding to maximum total strain response.

Fig. 18 Total measured strain in the cantilever beam as a function of excitation frequency.

The experimental resonant frequencies are then determined by choosing the four frequencies at which the total strain in
the beam has a peak.

D. Plate Results
In Fig. 19, the character of the strain distribution as a function of the frequency of excitation is illustrated for the

cantilever plate, where the absolute value of the strain amplitude is plotted for each FBG along each fiber. Similar to
figures in the beam section, the absolute value of the strain at each sensor is plotted as a color map, with dark blue
corresponding to low absolute strain and dark red to high absolute strain. The regions of high strain response occur near
the natural frequencies of the plate. Detail plots of the regions around the first five resonant frequencies are shown in
Fig. 20.

(a) (b) (c)

Bending Fiber 1 Bending Fiber 2 Twist Rate Fiber

Fig. 19 Strain distribution in the cantilever plate subjected to harmonic excitation as a function of excitation
frequency. (a) Leading edge (bending) fiber. (b) Trailing edge (bending) fiber. (c) Midchord (twist rate) fibers.
Color map with dark blue/dark red corresponding to low/high strain absolute value.
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Fig. 20 Detail of strain distribution in the cantilever plate subjected to harmonic excitation for the regions
around the first five resonant frequencies. Columns correspond to the leading edge, trailing edge, and midchord
fibers, while rows correspond to the modes. Color map with dark blue/dark red corresponding to low/high
strain absolute value.
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Although 39 FBGs are bonded in each of the fiber runs, the twist rate fiber sensors are positioned every 15 mm, and so
span from 15 to 585 mm along the plate’s total length of 800 mm. Upon visual inspection of the color map plots, it can
be seen that the regions of high strain responses in each fiber correspond to the same frequency regions. In addition,
although only a portion of the entire plate’s length is covered with the twist rate fiber, this fiber has the largest response
at the torsional modes.

In order to determine the experimental resonant frequencies of the plate, the total strain in each fiber is calculated at
each excitation frequency. This response metric is plotted in Fig. 21 for each fiber.

Fig. 21 Total measured strain in the cantilever plate for the three fibers as a function of excitation frequency.

The experimental resonant frequencies are then determined by choosing the five frequencies at which the total strain in
one of the fibers has a peak. The peaks for all fibers are located at the same frequencies.

VIII. Comparison of Theoretical and Experimental Results

A. Beam Comparison
The normalized FOSS curvature splines at the identified natural frequencies are plotted in Fig. 22(a) along with the

analytical curvature shapes. The normalization of the experimental data is conducted by adjusting a scaling factor to
minimize the least squares residual between the analytical and scaled experimental curvature shapes. The reason for this
scaling is to directly compare the shapes of the curvature distributions. The FOSS spline is then integrated twice to
yield the normalized mode shapes, which are plotted with the analytical mode shapes in Fig. 22(b).
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Fig. 22 (a) Curvature and (b) mode shapes of the cantilever beam based on integration of experimental FOSS
strain data.

The curvature distributions based on FOSS agree relatively well with the analytical functions, although the accuracy
does decrease as the mode number increases. The integrated mode shapes follow the same pattern, where the differences
in shape increase for higher modes. These differences may be attributable to physical differences between the experiment
and the analytical model or to experimental uncertainties, but the relative accuracy of these methods in comparison to
the results of classical beam theory, particularly for the first two modes, is notable.

Although the torsion and in-plane bending modes are not estimated experimentally due to the transverse method of
excitation, the different analytical predictions will be compared here for the beam properties given in Table 1. The
torsional constant for a rectangular section, based on the Fourier series solution to the exact torsion problem including
warping, is found to be [36]:

J =
bh3

3

[
1 − 192

π5
h
b

∞∑
i=1,3,5,...

1
i5

tanh jπ
b

2h

]
. (25)

Evaluating 10 terms in the series results in a torsional constant for the beam specimen of J = 394.562 mm4. It can then
be shown that the r-th torsional natural frequency is [36]:

ωr =

(√
GJ
ρIx l2

) (
(2r − 1)π

2

)
(26)

The analytical natural frequencies of the beam can be computed using the properties in Table 1 and the classical
beam model previously described. The beam FE model was analyzed in MSC NASTRAN 2018.0 [33] using SOL
103 (normal modes analysis) and CQUAD4 elements. The mesh was refined until convergence in the reported natural
frequencies to three decimal places. These values and those determined experimentally are summarized in Table 8.

Table 8 Comparison of theoretical and experimental resonant frequencies for the cantilever beam (Hz). Theo-
retical models do not include damping.

Method
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

(Bending 1) (Bending 2) (Bending 3) (Bending 4) (Torsion 1) (Bending 5)
Analytical 13.0 81.7 155.4 228.8 281.1 448.4
FE 13.1 82.4 154.6 230.8 296.5 453.0
Experimental 12.7 77.8 - 207.8 - 380.5

All bending modes reported in Table 8 are out-of-plane bending modes (i.e., bending about the y axis shown in Fig. 1)
except for the “Bending 3” mode, which is an in-plane bending mode (i.e., bending about the z axis). The analytical
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estimate for this in-plane bending mode is determined by switching the role of the cross-sectional width and height in
the computation of its second moment of area.

Although there is a general agreement between the theoretical and experimental values, the relative difference
between them increases as the mode number increases. The influence of damping on the experimental values, which is
not accounted for in the theoretical models (analytical and FE), is a contributing factor to these increasing differences.
In addition to the increasing structural and air damping as the excitation frequency increases, the impact of experimental
conditions (e.g., unmodeled mass/stiffness contributions from shaker/sensors/boundary conditions) increases for higher
excitation frequencies.

B. Plate Comparison
The normalized strain shapes at the identified natural frequencies are plotted in Fig. 23 in comparison to the FE

strain for the first four modes (originally shown in Fig. 10).

(a) Mode 1, Bending 1 (b) Mode 2, Torsion 1

(c) Mode 3, Bending 2 (d) Mode 4, Torsion 2

Fig. 23 Measured strain distribution in three fibers at the first four natural frequencies of a cantilever plate in
comparison to FE results.

The experimental results for the bending fibers show relatively high correspondence with the strain distributions
predicted through FE analysis for all four modes. The twist rate fiber results, on the other hand, generally follow the
expected distribution based on FE analysis but are significantly more noisy.

Due to the noisy twist rate measurements, a method utilizing the leading and trailing edge bending fibers to estimate
the mode shape is used here. Based on this method, the bending fibers will be taken to approximate the bending of thin
strips at their respective edges, and then a surface between the two used to describe the deflection at interior points of
the plate. Since only two bending fibers are available, a linear relationship is used to describe the connection between
the bending lines:

w(x̂, ŷ) = ŷ · wLE(x̂) + (1 − ŷ) · wTE(x̂) (27)
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where wLE(x̂) and wTE(x̂) are the bending deflections at the leading and trailing edges calculated using the integration
matrix method described above for beams. Comparisons between these calculated mode shapes and those based on FE
analysis/products of beam functions are shown in Fig. 24.

(a) Mode 1, Bending 1 (b) Mode 2, Torsion 1

(c) Mode 3, Bending 2 (d) Mode 4, Torsion 2

Fig. 24 Comparison of plate mode shapes determined experimentally (grids) and by FE analysis (dots) for the
first four modes.

Although there are noticeable differences between the FOSS estimated shapes and the numerical models, the FOSS
integration method based on measured strain is relatively accurate in comparison. In addition to experimental
uncertainties, a portion of these differences may be attributable to physical differences between the experiment and the
analytical models (e.g., the effect of the shaker).

Using the natural frequency parameters reported in Table 4, which are based on the Rayleigh-Ritz method and
modes shapes approximated with products of beam functions, the natural frequency predictions of the plate can
be determined by Eqn. (18). The natural frequencies based on these frequency parameters, FE analysis, and those
determined experimentally are summarized in Table 9.

Table 9 Comparison of theoretical and experimental resonant frequencies for the cantilever plate (Hz). Theo-
retical models do not include damping.

Method
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

(Bending 1) (Torsion 1) (Bending 2) (Torsion 2) (Bending 3)
Rayleigh-Ritz 4.2 17.5 26.3 57.2 73.7
FE 4.2 17.4 26.1 57.1 73.3
Experimental 4.3 18.3 26.4 57.8 72.8

The experimental resonant frequencies agree well with the numerical predictions (Rayleigh-Ritz and FE). Damping,
imperfect boundary conditions, and unmodeled contributions from the shaker/fiber bonds are all potential sources of
experimental differences.

IX. Conclusion
In this paper, the feasibility of using FOSS technology for real-time static and dynamic shape sensing of flexible

bodies is investigated. Strain-based methods for shape estimation are described and then applied to experimental strain
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data for a cantilever beam and plate. In comparison to theoretical models of these systems, it is shown that FOSS
measurements can be used to accurately estimate the static and dynamic shapes of the benchtop structures and estimate
their resonant frequencies.

Based on these experiments, the next stage of this research will be the validation of FOSS feedback control in
benchtop testing. One of the key capabilities of FOSS is low-mass/low-volume distributed sensing, which may enable
improved controller performance for a variety of control objectives (e.g., quasistatic shape control or modal suppression).
Follow-on work will then focus on the application of this sensing technology to the IAWTM aeroelastic model to be
tested in the TDT.
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